If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-42x-63=0
a = 3; b = -42; c = -63;
Δ = b2-4ac
Δ = -422-4·3·(-63)
Δ = 2520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2520}=\sqrt{36*70}=\sqrt{36}*\sqrt{70}=6\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-6\sqrt{70}}{2*3}=\frac{42-6\sqrt{70}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+6\sqrt{70}}{2*3}=\frac{42+6\sqrt{70}}{6} $
| x+1+2-(-x+3)=8-(1-1) | | 40=6x+17 | | 5n+7=8 | | 8x−4=3x+11 | | .5(n-4)-3.5n=-17 | | 8y−4=3y+11 | | 8/x=5/x-2 | | 5-x-1=5-(x+1) | | x/6=12=24 | | 6.8/8=x/14 | | 1/7(8t-8)=t+8/14 | | z/3+5=7 | | 6.857/8=x/14 | | 7x-4=5x-2x+35 | | 50=-10t=80 | | x2=9=9 | | 3.2+y=11 | | (b/2)+(1/5)=17 | | 2(3x-4)+2x+2=24 | | 27=12+2x | | 2.35/38.5=x/100 | | Y=-5x0+2 | | 2(3x-4)-(2x+2)=24 | | 14x=12=15 | | x-361=123 | | 16x-2+14x+3=61 | | x+87=777 | | (7x-5=3x+4)(-2) | | -4x=2104 | | 2(2x-4)=-24 | | 3x-8=19* | | -7x+2=4x-10 |